A Case against Exclusive Reliance on Volumetric Mix Design

Airfield Asphalt User Producer Group 2021 Annual Tri-Service and Industry Review Meeting February 22nd, 2021

Ben C. Cox, PhD, PE Research Civil Engineer, US Army Corps of Engineers, ERDC benjamin.c.cox@usace.army.mil

Innovative solutions for a safer, better world

of Engineers®

Acknowledgements

- Jonathan Easterling, Huey P. Stockstill, LLC
- Griffin Sullivan, Mississippi DOT
- Alex Middleton, Mississippi DOT
- Isaac Howard, Mississippi State University

Overview

- Asphalt industry strained by multiple factors in recent years
 - Increased asphalt binder costs
 - Limited funding
 - Pressure to recycle
 - Deteriorating pavement networks
- Mix design should account for market in which it is used
- Today's market much different than when current volumetric mix design practices were developed

Overview

- Objective: present trends from a statewide database of 1,452 volumetric mix designs approved by Mississippi DOT between 2005 and 2018
- Data highlights several issues and unintended consequences of exclusive (or near-exclusive) reliance on volumetrics
- Data builds a case for reintegrating mechanical tests
- Caveat: yes, this is highway data; still many overlapping areas with airfields, as will be discussed, and worthwhile lessons learned

40-Year Trends (Big Picture)

Deteriorating Pavements

- Mississippi DOT pavement condition ratings trending wrong direction
- Biggest distress? Cracking (dry mixes)

What about Airfield Pavements?

- Material costs are a factor
- Recycled materials are less of a factor, though still a factor (RAP)
- Fuel tax not a factor, but funding still has constraints
- Distresses may differ slightly, but environmental/durability issues (e.g. weathering, raveling, linear cracking, block cracking) are still the limiting factor (Rushing et al. 2014, Robinson 2019)

Age (yr)	Surface Area (%)	Avg PCI	Contribution to PCI Reduction (%)		
			Climate	Load	Other
< 7	9	91	50	44	6
7 to 15	15	85	88	5	7
15 to 25	23	68	82	12	6
25 +	52	51	84	10	6

Army airfield data from Rushing et al. (2014)

Mix Design Database

- 1,452 MDOT approved Superpave mix designs from 2005 to 2018
- Database quick-look
 - Mix Types: DGA (1,308), SMA (84), other (60)
 - NMAS: 19 mm (381), 12.5 mm (403), 9.5 mm (475), other (49)
 - N_{des}: 50 gyr (468), 65 gyr (393), 85 gyr (447)
- Properties
 - General classification (mix type, NMAS, etc.)
 - Aggregates (gradation, gravities, etc.)
 - Asphalt binder (source, PG grade, etc.)
 - Mixtures (gravities, design volumetrics, etc.)

What about Airfield Mix Design Specifications?

- MDOT and UFGS specs not that different (aggregate properties included)
- Biggest difference: gradation bands

UFGS Airfield vs. MDOT Highway Mix Design Specifications Property UFGS **MDOT** RAP, % (max.) 20 (not allowed in 20 in surface surface except shoulders) 30 in underlying N_{des} (or blows) 50, 75 50, 65, 85 V_{a. des}, % 4.0 4.0 VMA, % (min.) 13.0, 14.0, 15.0 13.0, 14.0, 15.0 (for gradations 1, 2, 3) (for 19, 12.5, 9.5 mm) **Dust Proportion** 0.8 - 1.20.8 - 1.6TSR, % (min.) 75 85 Wet S_t, psi 60 ___ Interior Coating, % ≥ 95 Boil Test Coating, % ≥ 95 Stability, lb (min.) 1350, 2150 (Marshall) ___ Flow, 0.01 in. 8 – 18, 8 – 16 (Marshall) ---

Key Findings from Mix Design Database

Database trends discussed in five categories

- 1. VMA
- 2. G_{sb} and Abs
- 3. RAP Content
- 4. Coarse vs. Fine Gradations
- 5. N_{des}

1. VMA

- VMA controls design asphalt content
- Common misconception that V_a controls design asphalt content because of the typical steps of performing a mix design

1. Performing a Mix Design

- Select asphalt content at 4.0% V_a
- Check that other
 properties are okay at that
 asphalt
 content
- 3. If so, check moisture susceptibility

- 1. Moisture Susceptibility
- TSR = ratio of wet to dry indirect tensile strength (S_t)

US Army Corps of Engineers • Engineer Research and Development Center

H INBOLDT

1. VMA

- V_a appears on the surface to determine $P_{b, des}$, but...
 - $V_{a,\,des}$ is $\underline{\textbf{fixed}}$ and will always be 4.0%
 - VMA is <u>not fixed</u>
 - $V_{be} = VMA V_{a, des}$
 - V_{be} fluctuates with VMA (i.e. aggregate blend)

• So, VMA effectively controls asphalt content

1. VMA Trends

- 80% of mixes are within 0.6% of minimum VMA (VMA_{min})
- Being skewed heavily towards VMA_{min} suggests mix optimization based on VMA
- We know binder is most expensive component of a mix
- In a low-bid environment, VMA will generally be as close to VMA_{min} as reasonably possible to maintain an economical mix

- **1. VMA Dependency on G_{sb}**
- VMA calculation depends on G_{sb}; G_{sb} complicates matters
- Unlike G_{mb}, G_{mm}, etc. (fairly foolproof), G_{sb} is more operator dependent and inherently variable
- AASHTO/ASTM d2s for 50/50 coarse/fine agg. blend is 0.052
- This offers large window to find a "favorable" G_{sb}
- Generally, you will find inflated G_{sb} values (achieved by drying agg. past SSD condition)

• Inflating G_{sb} (even within d2s limits), increases the *calculated* VMA

 This provides a VMA "buffer" where gradation can be tweaked to bring <u>calculated</u> VMA back down to a more conservative value

• Because <u>actual</u> VMA decreased, V_a is fixed, V_{be} is then decreased

Now, <u>actual</u> VMA and V_{be} are lower than desired, although <u>calculated</u> VMA says, "I'm fine, everything is fine." You have a dry mix.

- Putting G_{sb}-VMA relationships back in context of MDOT database...
- 80% of mixes could be failing VMA but calculate as passing with G_{sb} inflated by 1/3 d2s limit, resulting in up to 0.3% asphalt reduction
- With G_{sb} inflated the d2s limit, this could be the case for 99% of mixes, resulting in up to 0.8% asphalt reduction
- $\bullet~G_{\rm sb}$ inflation allows manipulation and economization of mixes

2. G_{sb} and Abs

- Can you tell if G_{sb} might be inflated?
 - VMA will look okay
 - P_b might not be noticeable unless it is really low
 - Low P_{ba} could be low-absorption aggregate or inflated G_{sb} may not be obvious
- Some suggest you can compare P_{ba} to Abs using rules of thumb

2. G_{sb} and Abs

- There is a relationship between P_{ba} and *Abs* on average (less reliable for any one specific case due to scatter)
- However, an inflated G_{sb} will yield a deflated Abs, so low P_{ba} will not stand out in comparison to a low Abs (i.e. rule of thumb will check out)

3. RAP Content

- Intuitively, binder demand would increase with RAP content, all other factors being equal
- In practice, V_{be} actually drops (0.45% V_{be} , or 0.2% P_{be} , at 30% RAP)
- Unintended consequence concerning in light of stiffer RAP binder

4. Coarse vs. Fine Gradations

- Common thought is that finer gradations could be used to obtain richer asphalt mixes
- Finer gradations have more surface area; therefore, binder demand is greater and asphalt content will go up -- Right??? 250200250n = 772

4. Coarse vs. Fine Gradations

- Gradation type has no impact in practice
- V_{be} is 10.4 vs 10.5%; P_{be} change of 0.04% (basically no difference)
- Min. VMA criteria didn't change, so asphalt content didn't change

5. Decreasing N_{des} Level

- Another common suggestion to increase asphalt content is reduce N_{des}
- Less compaction \rightarrow looser agg skeleton \rightarrow higher VMA \rightarrow higher V_{be}

Rule of Thumb: 30 gyr = 1% VMA = 0.4% P_{be}

5. Decreasing N_{des} Level

- In practice, changing N_{des} has no meaningful impact because nothing prevents the mix designer from adjusting the agg. blend and/or gradation
- Since VMA_{min} didn't change, mix designer can choose to bring VMA back down by filling voids with aggregate – it's cheaper than binder

Summary

- Data from practice across an entire state supports numerous other studies consisting of smaller datasets that may only evaluate one factor at a time
- Volumetric-only mix design is not fully capable of dealing with presentday mixes
- Mechanical tests are needed, perhaps more now than when they were sought during SHRP

Example Mechanical Tests

Semi-Circular Bend Test

Dynamic Modulus Test

Cantabro Durability Test

Loaded Wheel Tracking Test

Mechanical Test Discussion Teaser

Important considerations

70

60

50

40

30

20

10

0

0

2

3

CML (%)

- "Balanced" mix design (i.e. balancing rutting and cracking ends of spectrum)
- Logical test outputs (e.g. gets worse with age)
- Test time and cost
- Ability to perform during plant production for QC

27

Questions?

Ben Cox Benjamin.c.cox@usace.army.mil 601-634-2376